
Building Collaborative Apps

with Wookie

Collaborative Apps

• Use W3C Widgets packaging and
widget object API with the Google Wave
Gadgets API

• Runs in Wookie, no Wave server • Runs in Wookie, no Wave server
needed

• Requires plugins that can provide
participant information using the Wookie
REST API

Collaborative Widgets: APIs

• State

• Participants

State

• State is shared across widgets with the
same IRI in the same shared context.

• State is propagated to related widgets • State is propagated to related widgets
using an event callback

• State is set by submitting deltas (as
associative arrays) or single values

State example

wave.setStateCallback(stateUpdated);

stateUpdated = function(){

var keys = wave.getState().getKeys();var keys = wave.getState().getKeys();

for (var i = 0; i < keys.length; i++) {

alert(wave.getState().get(keys[i]));

}

};

wave.getState().submitValue(“key”, “value”);

State change events

• State changes are automatically pushed
to your widget instance, you don’t need
to poll or check manuallyto poll or check manually

– So keep your state model as small as you

can to reduce latency

• Usability tip: Consider whether to auto-refresh, or to

prompt the user to refresh using a message. It can be

confusing for users if the layout or order of items

changes without them doing anything.

Participants

• Information about users accessing the widget

• Set by the plugin by calling Wookie’s

participants REST API

• Viewer is the current user object; participants

is the set of users

• Good to have fallback as widget may be used

in a “guest access” environment with no

viewer (e.g. see Natter widget)

Participants

• Register callbacks with:
wave.setParticipantCallback(myfunction);

• Methods*:• Methods*:
– getViewer() - get the current user

– getParticipants() - get map of all participants

• Model:
– getId(), getDisplayName(), getThumbnailUrl()

*in future releases the getHost() method will also be supported

Making a collaborative app

• This requires some more planning

1. Draw up a design1. Draw up a design

2. Create a working test page

3. Implement models, action handlers
and event handlers

4. Create the config.xml, icon.png, zip it
up and run it

Design

• Start with the view - what the widget
looks like

• Create the model - what are the objects • Create the model - what are the objects
in the state model?

• Add the actions - how you interact with
it

• Wire it all up…

Prototyping

• Make a regular html page to test out
your view. Populate it with fake model,
and don’t wire up the actions yetand don’t wire up the actions yet

• You can reuse this for the real widget -
just take out your fake state info
sections

Implementing

• Create a “Model” object for your state
model

• Create a “Controller” object, and a • Create a “Controller” object, and a
method in it for each action

• Register the participant and state event
handlers with an “update view” method
that populates the view when running

Models

• Models can be implemented in typical “bean” fashion

• Save/Find methods need to access wave state

• Can use JSON (e.g. with json.js) or just plain strings for storage

function Task(id,name,status,assigned){

this.task_id = id;

this.name = name;

this.status = status;

this.assigned_to = assigned;

}

Task.prototype.save = function(){

wave.getState().submitValue(this.task_id, JSON.stringify(this));
}

Task.create = function(json){

var obj = JSON.parse(json);

var task = new Task(obj.task_id,
obj.name,obj.status,obj.assigned_to);

return task;

}

Task.find = function(task_id){

var keys = wave.getState().getKeys();

for (var i = 0; i < keys.length; i++) {

var key = keys[i];

Static model methods

• Typically need
methods to turn
state strings back
into model instances

if (key == task_id){

return Task.create(task_id, wave.getState().get(key));

}

}

return null;

}

Task.findAll = function(){

var tasks = {};

var keys = wave.getState().getKeys();

for (var i = 0; i < keys.length; i++) {

var key = keys[i];

var task = Task.create(key, wave.getState().get(key));

tasks[key] = task;

}

return tasks;

}

into model instances

• Also finder methods
to get a particular
model object

• This isn’t the only
way to do this, but is
an OK pattern

/**

* The Controller object

* This is used to wire up the view and model with actions

*/

var Controller = {

// Action handlers

// Toggle task state between completed and to-do

Controllers

• Methods for each
action, making
changes to the
model// Toggle task state between completed and to-do

toggleTask: function(task_id){

},

// Create a new task

newTask: function(){

},

// Abandon task for someone else to do

abandonTask: function(task_id){

},

// Claim a task (assign to self)

claimTask: function(task_id){

}
}

model

• You usually don’t
need to do any code
that interacts with
HTML, as the event
handlers should do
that

// Update the view when state has been updated

stateUpdated: function(){

var tasks = Task.findAll();

if (tasks && tasks != null){

var tasklist = "";

for (key in tasks) {

var task = tasks[key];

tasklist += // the task stuff to show

Event Handlers

These fire whenever the state or
participants are updated (e.g. by
another instance).

Event handlers need to be registered
like so:

tasklist += // the task stuff to show

dwr.util.setValue("tasklist", tasklist, {
escapeHtml:false });

var objDiv =
document.getElementById("tasklist");

objDiv.scrollTop = objDiv.scrollHeight;

}

},

participantsUpdated: function(){

Controller.updateUser();

}

like so:

wave.setStateCallback(Controller.stateUpdated);

wave.setParticipantCallback(Controller.participantsUpdated);

Also useful to have these methods
called from onLoad() in an init()
function to create the initial view

You can import JQuery if you like for
setting the view content, or do it
using DOM

Packaging

You need to add this to your config.xml to tell

Wookie to include the Wave Gadget API

methods:

<feature name="http://wave.google.com"

required="true"/>

Fallback behaviours

Viewer handling with fallback

/**

* Setup user information

*/

user: {},

updateUser:function(){

if (wave.getViewer() != null){

Controller.user.id = wave.getViewer().getId();Controller.user.id = wave.getViewer().getId();

Controller.user.username = wave.getViewer().getDisplayName();

Controller.user.thumbnail = wave.getViewer().getThumbnailUrl();

}

if (Controller.user.thumbnail == "" || Controller.user.thumbnail == null)

Controller.user.thumbnail = "anon.png";

if (Controller.user.username == null || Controller.user.username == ""){

Controller.user.username = "anonymouse";

Controller.user.id = "anonymous";

}

}

Viewer handling with fallback:

alternative approach

if (wave.getViewer() != null){

username = wave.getViewer().getDisplayName();

thumbnail = wave.getViewer().getThumbnailUrl();

}

if (thumbnail == "" || thumbnail == null)

thumbnail = "Images/default_thumbnail.png";

if (username == null || username == ""){

username = "natterer" + rnd_no(9999);

}

Single-user mode

Could your app also work in a single-user

environment with no Wave API?
e.g. test for existence of “wave” object, and adapt if its not

present - e.g. store data in preferences not statepresent - e.g. store data in preferences not state

More faff, but makes your widget work in more situations (e.g.
mobile)

<feature name="http://wave.google.com"

required="false"/>

Spot the (semi) deliberate

mistakes!

• There are a few problems with the ToDo

widget - can you identify possible widget - can you identify possible

improvements?

– Removing Wookie-specific code

– Improved usability

– Missing functionality

Uploading, debugging and

testing
• You need a

collaborative
environment to test your
widget properly

• E.g. a Moodle or an

Elgg installation

• Its useful though to test
using Wookie’s built in
“demo” mode to check it
still works OK in a
“guest access” or
anonymous user setup

Other stuff…

• AJAX

If you want to call
external sites from
within the widget,

• Camera access

There is experimental

support for BONDI

camera capture API
within the widget,
call myurl =
widget.proxify(url)
first to call it via
proxy. Also need to
add the site to the
server whitelist.

camera capture API

(will be checked in

soon)

