

Business
and Sustainability Models

Around
Free and Open Source Software

OUCS, 12 January 2009

What we will cover:

● Enforcement, Exclusions and Risks
● Software Patents and FOSS
● Sustainability and Business Models
● Some Project Examples
● Conclusion

Enforcement, Exclusions and Risks (1)

● Many within the FOSS community reject the idea that a FOSS licence is a
contract

● This is mainly for practical reasons, as contract law varies widely between
countries, and is relatively expensive to litigate.

● In comparison IP law and specifically copyright law is more uniform, being
the subject of numerous international treaties

● They argue that there is thus no need for explicit acceptance – the licensor
either abides by the conditions of the licence or has no licence

● Thus enforcement of licence conditions is traditionally undertaken by
asserting copyright infringement (no licence) rather than contractual breach

Enforcement, Exclusions and Risks (2)

● Exclusions of warranty and limitations of liability in all current FOSS licences
are drafted to be effective under US law. Note: The GNU GPL v3 allows the
inclusion of additional, regionalised exclusions and limitations.

● Occasionally the legal basis for the enforceability of FOSS licences is
challenged, for example Wallace v. FSF, where it was argued that the GPL
was a form of price-fixing and Jacobsen v. Katzer, where it was argued that
a FOSS licensor must rely on contract law to enforce their conditions (both
failed)

● Many FOSS licences do not specify a jurisdiction in which disputes should
be resolved (and some specify inappropriate jurisdictions)

Software Patents and FOSS

● Traditionally staff charged with exploiting software IP generated in UK
Higher Education have considered the obtaining of software patents.

● Care needs to be taken when assessing FOSS exploitation and patent
exploitation in proximity. In general, FOSS licensing will undermine most
exploitable value in a software patent held on processes embodied in that
software (although see below).

● This is because many FOSS licences explicitly license all patent rights
necessary to use and distribute the software to everyone in the world, free of
charge. Even those licences which do not do this explicitly can be strongly
argued to do so implicitly under the legal doctrines of regions such as the US
and UK.

Business and Sustainability Models

● These are mostly not mutually exclusive, and will most often be used in
combination as appropriate – more accurately they are elements of business
models

● This is still an emerging area of business practice

● Some of the current success of FOSS software exploitation techniques may
be attributable to dissatisfaction with more traditional proprietary techniques
and their associated big-name vendors, rather than any innate superiority

● It remains to be seen whether the current global financial difficulties will help
FOSS business or hinder it. Analysts are currently predicting both.

First - what you cannot / should not do

● Charge for licences for specific uses of your code, for example commercial
use (Open Source Definition point 6)

● Charge for licences in general (Possible but subject to low/zero-cost
competition from all recipients)

● Tweak an existing FOSS licence for your purposes and still call your
software Free Software or Open Source Software (Strong community
rejection of these practices)

● Silently incorporate FOSS software in your proprietary offering without
abiding by the licence conditions (detection is likely, and although legal
damages are unlikely, damage to reputation is certain)

Academic Community Development

● FOSS licensing permits a varied group of contributors to work on software
that addresses a particular problem domain.

● Institutions and their academics can gain public profile by contributing to
such projects and becoming associated with respected tools in specific areas
of research. It can also help ensure the continued existence of useful
solutions.

● Examples include BioImage Suite (biological image analysis software)
YARP (experimental robotics software) and The Versioning Machine
(software for aligning differing versions of xml-encoded texts).

● Recognition for work on academic tools is still, however, some way behind
more traditional forms of academic recognition for publication etc

Establishing a separate legal entity

● Adds to sustainability by isolating risks (IP infringement, event organisation,
damages from failure) from the parent institution

● Facilitates donation of money and simplifies tax issues

● Most research institutions are already well-practised in setting up spin-out
companies. In the case of sustaining FOSS projects some kind of not-for-
profit entity may be just as or even more appropriate

● Such an entity can still have an affiliated commercial entity engaged in
exploiting the software and the brands that it stewards

Moving into an external foundation

● The benefits of foundation status have led to the establishment of umbrella
foundations holding multiple FOSS projects.

● Examples include the Apache Software Foundation, which supports
Apache HTTP Server, Cocoon, Lucene, Software in the Public Interest,
which supports the Debian Linux distribution and PostgreSQL, and the
Software Freedom Conservancy, home to Samba, Busybox and Wine

● Entering an umbrella foundation can radically reduce running costs for
projects that receive financial donations, as the foundation will handle the
necessary book-keeping, as well as providing the risk management benefits
that come with separating legal responsibility for a project from your host
institution

'Community Source' Foundations

● Where a number of separate institutions see a benefit in jointly developing a
piece of FOSS, they can adopt a model which has come to be known,
somewhat confusingly, as 'Community Source'

● Each institution contributes resources to developing the code, the
ownership of which rests in an external foundation

● In the initial phases the code may be unavailable outside the foundation,
although it will eventually be released under a FOSS licence

● Contributing resources to the foundation buys institutions early code access
and influence on the governance of the project and its functionality

● Mellon-funded projects Sakai and Kuali both began using this model

Consultancy

● Consultancy is another traditional technique for educational institutions
looking to financially exploit their resources

● A more traditional model might be to sell licences to a piece of research-
derived software and sell consultancy services and/or bespoke development
services alongside it

● Potentially a FOSS release of the software can improve uptake, given its
low cost of acquisition, and drive the market for associated consultancy and
development services more successfully than the traditional model

Internal Cost Reduction

● Institutions may be happy to sustain an internally-developed FOSS project
themselves if the project can demonstrate that it drives down the running
costs of that institution or solves an institutional problem

● Projects that reduce costs in one institution may have good potential, when
mature, to be deployed in others. This provides opportunities for paid
consultancy and/or provision of the software as a service (see below)

Provision of Paid Support /
Documentation

● Just because your code is freely available, it does not mean that the
documentation or your help needs to be (as with the consultancy and
bespoke development model)

● Support can be provided in time- or incident-limited bundles

● Support can be in the form of guaranteed performance on specific hardware

● Documentation can take the form of paid access to a knowledge base of
previously resolved issues

● HOWEVER, in this case one is in competition with the software's user base/
community, who may be willing to provide peer support for free

Integration / Managed Upgrades

● Managing the integration of various FOSS technologies, with their varying
dependencies and release cycles, is a service that people are prepared to
pay for

● Similarly managing the deployment of upgrade patches can be a paid
service

● Bundles of tested, integrated FOSS software can be sold along with,
potentially, support agreements

● HOWEVER, close integration may trigger responsibilities in particularly
copyleft licences that could prevent integrated distribution – read the licences

Competitor Disruption

● Sometimes a FOSS alternative to a competitor's product can disrupt their
business model and provide competitive advantage (although this is almost
never the sole motivation behind the release or distribution)

● Examples (arguably) include Sun's OpenOffice.org, Google's bundling and
distribution of Microsoft-competing software such as OpenOffice.org, Firefox
and Chrome (the 'Google Pack'), Netscape Corporation's FOSS release of
Netscape Navigator

Software as a Service

● Increasingly consumers are becoming comfortable with so-called 'cloud'-
based software offerings – software that is accessed and used over the
internet, and which stores data remotely from the user

● SaaS can be a useful solution to the problem of institutionally developed
software that relies integrally on copyleft-licensed code

● Provision of service using copyleft software does not count as distribution,
and thus does not trigger copyleft's reciprocal licensing responsibilities

● HOWEVER – this is a known 'bug' in copyleft licensing, and licences such
as the GNU Affero GPL v3 are already in existence to 'fix' it.

Advertising / Referral

● Your software or accompanying web site may be able to direct network
traffic to an entity that is willing to pay for hits (although of course this
functionality can always be engineered out by technically apt users)

● This is Mozilla Foundation's main source of income

● Firefox's built-in search box directs queries to Google

● In 2007 'the vast majority' of Mozilla Foundation's $75m revenue came
from Google under this deal. They are now being investigate by the US IRS

● Wordpress, the FOSS blogging software and hosting platform raised $29.5
million in its last round of investment and is expected to move to this
business model in the future

Training and Accreditation

● As well as support and consultancy, generalised training documents,
courses and qualifications may be viable products

● Control of an associated trademark enables the provision of 'X-Certified
Professional' style programmes

● Actual training and examination are readily out-sourced

Trademark Licensing / Merchandising

● Just because your code is available under a FOSS licence, you do not have
to permit universal use of your project's name and associated symbols

● Unlike copyright, trademarks are a registered form of IP, meaning that you
have to apply to relevant government agencies for ownership. However,
compared to patent application, trademark registration is relatively
inexpensive

● Owning your trademark facilitates the sale of associated merchandise and
accreditation and marks like “Powered by X” and “Using X technology”

● Can be a deterrent to forking if the brand is strong enough – the motivation
to increase personal reputation by providing functionality outside project “X”
is partially undermined by the inability to call the new project “Improved X”

IP Indemnification

● As the SCO v. IBM case showed, software licensees can sometimes be
subject to unexpected threats of IP infringement action from third parties

● In traditional proprietary software licences the licensor will deal somehow
with the issue of what happens when a third party claims that the licensed
software contains some of their property (perhaps indemnifying the licensee
against any resulting financial costs, or perhaps specifically declining to do
so)

● Indemnification against third party claims can be a product sold alongside
FOSS distributions

● Many corporate customers look for this kind of security in IT solutions

Proprietary Versions and Components

● Sometimes referred to disparagingly as the 'Bait and Switch' model

● A FOSS edition of software is offered which lacks some of the functionality
of a paid edition, either throughout its code or in the form of missing
proprietary components

● While the existence of better-supported or hardware-accredited forms of
FOSS offerings is generally accepted by the FOSS community, proprietary
components and versions are less well-liked (although there is perhaps
growing acceptance as the community matures)

● HOWEVER, this is another example of competing with the community. The
FOSS model means that anyone can produce freely available versions of
your paid functionality, given enough time and expertise

Dual Licensing

● Provided that you have the necessary ownership or sub-licensing rights
over your project's code, you can provide it under differing licences

● In the classic case, these would be a copyleft licence and a paid proprietary
licence

● Customers who wish to build software product incorporating your code and
who do not wish to use the copyleft licence must pay for the proprietary
licence

● This is therefore most suitable for code which is readily susceptible to
inclusion within commercial software products, for example database
backends

'Patentleft'

● A variation on dual licensing

● Obtain patent on a software invention embodied in your software

● Release your code under a copyleft licence

● (Optional) Covenant not to assert patent rights against other FOSS software
implementations, (perhaps with some exceptions – undistributed, distributed
with hardware)

● Sell patent licences to interested parties who are neither protected by the
covenant or prepared to accept the responsibilities of your copyleft licence.

● Used by International Characters, a spin-out company of Simon Fraser
University in British Columbia

Examples: Red Hat

● Red Hat provides an enterprise Linux distribution, upgrades and many
services in exchange for a periodic subscription fee. Red Hat also runs the
Fedora project, an open development Linux version with many of the features
of Red Hat Enterprise Linux.

● Provision of paid support

● IP Indemnification

● Training and Accreditation

● Managed Upgrades

Examples: MySQL

● MySQL provides a SQL database system under commercial or copyleft
licences. Sun bought MySQL in 2008 for $1bn

● Provision of paid support

● Proprietary components (proposed)

● Consultancy

● Dual Licensing

● IP Indemnification (on commercial licence)

● Training and Accreditation

● Managed Upgrades

Examples: Exim

● Exim, the popular message transfer agent, began as an internal project
within the computing services at the University of Cambridge in 1996, and
has been in part supported by donation of staff resources by Cambridge
since then.

● Internal Cost Reduction

● Training

Examples: Xensource (pre-2007)

● Xen is a Linux-based virtualisation solution developed at the University of
Cambridge. After receiving VC funding the project sold tested distributions in
combination with hardware vendors and incident-limited bundles of technical
support. In 2007 Xensource was acquired by Citrix for $500m

● Provision of paid support

Conclusion

● 'FOSS' and 'commercial' are not antagonistic concepts - FOSS code is
increasingly accepted as a necessary component of commercial software (IT
consulting firm Gartner predicts FOSS will form some part of 80% of
commercial software offerings by 2012*)

● Thus it is becoming increasingly important for educational software projects
to understand FOSS licensing and exploitation if they are to reach
sustainability

 * http://gartner.com/it/page.jsp?id=593207

Questions?

OSS Watch - http://www.oss-watch.ac.uk/
Free Software Foundation - http://www.fsf.org/
Open Source Initiative - http://www.opensource.org/
Bill Gates' letter to hobbyists - http://en.wikipedia.org/wiki/Open_Letter_to_Hobbyists
The Cathedral and the Bazaar - http://www.catb.org/~esr/writings/cathedral-bazaar/
GNU GPLv3 - http://gplv3.fsf.org/
Wallace v. FSF - http://www.fsf.org/news/wallace-vs-fsf
Jacobsen v. Katzer - http://www.groklaw.net/articlebasic.php?story=20060514233436196
BioImage Suite - http://www.bioimagesuite.org/
YARP - http://eris.liralab.it/yarp/
The Versioning Machine - http://v-machine.org/
Apache Software Foundation - http://www.apache.org/
Software in the Public Interest - http://www.spi-inc.org/
Software Freedom Conservancy - http://conservancy.softwarefreedom.org/
Sakai - http://sakaiproject.org/portal
Kuali - http://kuali.org/
OpenOffice.org - http://www.openoffice.org/
Google Pack - http://pack.google.com/intl/en-gb/pack_installer.html
GNU Affero GPLv3 - http://www.fsf.org/licensing/licenses/agpl-3.0.html
Wordpress - http://wordpress.org/
SCO v. IBM - http://en.wikipedia.org/wiki/SCO_v._IBM
International Characters - http://www.international-characters.com/
Red Hat - http://www.redhat.com/
MySQL - http://www.mysql.com/
Exim - http://www.exim.org/
Xen - http://citrix.com/English/ps2/products/product.asp?contentID=683148

 1

Business
and Sustainability Models

Around
Free and Open Source Software

OUCS, 12 January 2009

 2

What we will cover:

● Enforcement, Exclusions and Risks
● Software Patents and FOSS
● Sustainability and Business Models
● Some Project Examples
● Conclusion

 3

Enforcement, Exclusions and Risks (1)

● Many within the FOSS community reject the idea that a FOSS licence is a
contract

● This is mainly for practical reasons, as contract law varies widely between
countries, and is relatively expensive to litigate.

● In comparison IP law and specifically copyright law is more uniform, being
the subject of numerous international treaties

● They argue that there is thus no need for explicit acceptance – the licensor
either abides by the conditions of the licence or has no licence

● Thus enforcement of licence conditions is traditionally undertaken by
asserting copyright infringement (no licence) rather than contractual breach

 4

Enforcement, Exclusions and Risks (2)

● Exclusions of warranty and limitations of liability in all current FOSS licences
are drafted to be effective under US law. Note: The GNU GPL v3 allows the
inclusion of additional, regionalised exclusions and limitations.

● Occasionally the legal basis for the enforceability of FOSS licences is
challenged, for example Wallace v. FSF, where it was argued that the GPL
was a form of price-fixing and Jacobsen v. Katzer, where it was argued that
a FOSS licensor must rely on contract law to enforce their conditions (both
failed)

● Many FOSS licences do not specify a jurisdiction in which disputes should
be resolved (and some specify inappropriate jurisdictions)

 5

Software Patents and FOSS

● Traditionally staff charged with exploiting software IP generated in UK
Higher Education have considered the obtaining of software patents.

● Care needs to be taken when assessing FOSS exploitation and patent
exploitation in proximity. In general, FOSS licensing will undermine most
exploitable value in a software patent held on processes embodied in that
software (although see below).

● This is because many FOSS licences explicitly license all patent rights
necessary to use and distribute the software to everyone in the world, free of
charge. Even those licences which do not do this explicitly can be strongly
argued to do so implicitly under the legal doctrines of regions such as the US
and UK.

 6

Business and Sustainability Models

● These are mostly not mutually exclusive, and will most often be used in
combination as appropriate – more accurately they are elements of business
models

● This is still an emerging area of business practice

● Some of the current success of FOSS software exploitation techniques may
be attributable to dissatisfaction with more traditional proprietary techniques
and their associated big-name vendors, rather than any innate superiority

● It remains to be seen whether the current global financial difficulties will help
FOSS business or hinder it. Analysts are currently predicting both.

 7

First - what you cannot / should not do

● Charge for licences for specific uses of your code, for example commercial
use (Open Source Definition point 6)

● Charge for licences in general (Possible but subject to low/zero-cost
competition from all recipients)

● Tweak an existing FOSS licence for your purposes and still call your
software Free Software or Open Source Software (Strong community
rejection of these practices)

● Silently incorporate FOSS software in your proprietary offering without
abiding by the licence conditions (detection is likely, and although legal
damages are unlikely, damage to reputation is certain)

 8

Academic Community Development

● FOSS licensing permits a varied group of contributors to work on software
that addresses a particular problem domain.

● Institutions and their academics can gain public profile by contributing to
such projects and becoming associated with respected tools in specific areas
of research. It can also help ensure the continued existence of useful
solutions.

● Examples include BioImage Suite (biological image analysis software)
YARP (experimental robotics software) and The Versioning Machine
(software for aligning differing versions of xml-encoded texts).

● Recognition for work on academic tools is still, however, some way behind
more traditional forms of academic recognition for publication etc

 9

Establishing a separate legal entity

● Adds to sustainability by isolating risks (IP infringement, event organisation,
damages from failure) from the parent institution

● Facilitates donation of money and simplifies tax issues

● Most research institutions are already well-practised in setting up spin-out
companies. In the case of sustaining FOSS projects some kind of not-for-
profit entity may be just as or even more appropriate

● Such an entity can still have an affiliated commercial entity engaged in
exploiting the software and the brands that it stewards

 10

Moving into an external foundation

● The benefits of foundation status have led to the establishment of umbrella
foundations holding multiple FOSS projects.

● Examples include the Apache Software Foundation, which supports
Apache HTTP Server, Cocoon, Lucene, Software in the Public Interest,
which supports the Debian Linux distribution and PostgreSQL, and the
Software Freedom Conservancy, home to Samba, Busybox and Wine

● Entering an umbrella foundation can radically reduce running costs for
projects that receive financial donations, as the foundation will handle the
necessary book-keeping, as well as providing the risk management benefits
that come with separating legal responsibility for a project from your host
institution

 11

'Community Source' Foundations

● Where a number of separate institutions see a benefit in jointly developing a
piece of FOSS, they can adopt a model which has come to be known,
somewhat confusingly, as 'Community Source'

● Each institution contributes resources to developing the code, the
ownership of which rests in an external foundation

● In the initial phases the code may be unavailable outside the foundation,
although it will eventually be released under a FOSS licence

● Contributing resources to the foundation buys institutions early code access
and influence on the governance of the project and its functionality

● Mellon-funded projects Sakai and Kuali both began using this model

 12

Consultancy

● Consultancy is another traditional technique for educational institutions
looking to financially exploit their resources

● A more traditional model might be to sell licences to a piece of research-
derived software and sell consultancy services and/or bespoke development
services alongside it

● Potentially a FOSS release of the software can improve uptake, given its
low cost of acquisition, and drive the market for associated consultancy and
development services more successfully than the traditional model

 13

Internal Cost Reduction

● Institutions may be happy to sustain an internally-developed FOSS project
themselves if the project can demonstrate that it drives down the running
costs of that institution or solves an institutional problem

● Projects that reduce costs in one institution may have good potential, when
mature, to be deployed in others. This provides opportunities for paid
consultancy and/or provision of the software as a service (see below)

 14

Provision of Paid Support /
Documentation

● Just because your code is freely available, it does not mean that the
documentation or your help needs to be (as with the consultancy and
bespoke development model)

● Support can be provided in time- or incident-limited bundles

● Support can be in the form of guaranteed performance on specific hardware

● Documentation can take the form of paid access to a knowledge base of
previously resolved issues

● HOWEVER, in this case one is in competition with the software's user base/
community, who may be willing to provide peer support for free

 15

Integration / Managed Upgrades

● Managing the integration of various FOSS technologies, with their varying
dependencies and release cycles, is a service that people are prepared to
pay for

● Similarly managing the deployment of upgrade patches can be a paid
service

● Bundles of tested, integrated FOSS software can be sold along with,
potentially, support agreements

● HOWEVER, close integration may trigger responsibilities in particularly
copyleft licences that could prevent integrated distribution – read the licences

 16

Competitor Disruption

● Sometimes a FOSS alternative to a competitor's product can disrupt their
business model and provide competitive advantage (although this is almost
never the sole motivation behind the release or distribution)

● Examples (arguably) include Sun's OpenOffice.org, Google's bundling and
distribution of Microsoft-competing software such as OpenOffice.org, Firefox
and Chrome (the 'Google Pack'), Netscape Corporation's FOSS release of
Netscape Navigator

 17

Software as a Service

● Increasingly consumers are becoming comfortable with so-called 'cloud'-
based software offerings – software that is accessed and used over the
internet, and which stores data remotely from the user

● SaaS can be a useful solution to the problem of institutionally developed
software that relies integrally on copyleft-licensed code

● Provision of service using copyleft software does not count as distribution,
and thus does not trigger copyleft's reciprocal licensing responsibilities

● HOWEVER – this is a known 'bug' in copyleft licensing, and licences such
as the GNU Affero GPL v3 are already in existence to 'fix' it.

 18

Advertising / Referral

● Your software or accompanying web site may be able to direct network
traffic to an entity that is willing to pay for hits (although of course this
functionality can always be engineered out by technically apt users)

● This is Mozilla Foundation's main source of income

● Firefox's built-in search box directs queries to Google

● In 2007 'the vast majority' of Mozilla Foundation's $75m revenue came
from Google under this deal. They are now being investigate by the US IRS

● Wordpress, the FOSS blogging software and hosting platform raised $29.5
million in its last round of investment and is expected to move to this
business model in the future

 19

Training and Accreditation

● As well as support and consultancy, generalised training documents,
courses and qualifications may be viable products

● Control of an associated trademark enables the provision of 'X-Certified
Professional' style programmes

● Actual training and examination are readily out-sourced

 20

Trademark Licensing / Merchandising

● Just because your code is available under a FOSS licence, you do not have
to permit universal use of your project's name and associated symbols

● Unlike copyright, trademarks are a registered form of IP, meaning that you
have to apply to relevant government agencies for ownership. However,
compared to patent application, trademark registration is relatively
inexpensive

● Owning your trademark facilitates the sale of associated merchandise and
accreditation and marks like “Powered by X” and “Using X technology”

● Can be a deterrent to forking if the brand is strong enough – the motivation
to increase personal reputation by providing functionality outside project “X”
is partially undermined by the inability to call the new project “Improved X”

 21

IP Indemnification

● As the SCO v. IBM case showed, software licensees can sometimes be
subject to unexpected threats of IP infringement action from third parties

● In traditional proprietary software licences the licensor will deal somehow
with the issue of what happens when a third party claims that the licensed
software contains some of their property (perhaps indemnifying the licensee
against any resulting financial costs, or perhaps specifically declining to do
so)

● Indemnification against third party claims can be a product sold alongside
FOSS distributions

● Many corporate customers look for this kind of security in IT solutions

 22

Proprietary Versions and Components

● Sometimes referred to disparagingly as the 'Bait and Switch' model

● A FOSS edition of software is offered which lacks some of the functionality
of a paid edition, either throughout its code or in the form of missing
proprietary components

● While the existence of better-supported or hardware-accredited forms of
FOSS offerings is generally accepted by the FOSS community, proprietary
components and versions are less well-liked (although there is perhaps
growing acceptance as the community matures)

● HOWEVER, this is another example of competing with the community. The
FOSS model means that anyone can produce freely available versions of
your paid functionality, given enough time and expertise

 23

Dual Licensing

● Provided that you have the necessary ownership or sub-licensing rights
over your project's code, you can provide it under differing licences

● In the classic case, these would be a copyleft licence and a paid proprietary
licence

● Customers who wish to build software product incorporating your code and
who do not wish to use the copyleft licence must pay for the proprietary
licence

● This is therefore most suitable for code which is readily susceptible to
inclusion within commercial software products, for example database
backends

 24

'Patentleft'

● A variation on dual licensing

● Obtain patent on a software invention embodied in your software

● Release your code under a copyleft licence

● (Optional) Covenant not to assert patent rights against other FOSS software
implementations, (perhaps with some exceptions – undistributed, distributed
with hardware)

● Sell patent licences to interested parties who are neither protected by the
covenant or prepared to accept the responsibilities of your copyleft licence.

● Used by International Characters, a spin-out company of Simon Fraser
University in British Columbia

 25

Examples: Red Hat

● Red Hat provides an enterprise Linux distribution, upgrades and many
services in exchange for a periodic subscription fee. Red Hat also runs the
Fedora project, an open development Linux version with many of the features
of Red Hat Enterprise Linux.

● Provision of paid support

● IP Indemnification

● Training and Accreditation

● Managed Upgrades

 26

Examples: MySQL

● MySQL provides a SQL database system under commercial or copyleft
licences. Sun bought MySQL in 2008 for $1bn

● Provision of paid support

● Proprietary components (proposed)

● Consultancy

● Dual Licensing

● IP Indemnification (on commercial licence)

● Training and Accreditation

● Managed Upgrades

 27

Examples: Exim

● Exim, the popular message transfer agent, began as an internal project
within the computing services at the University of Cambridge in 1996, and
has been in part supported by donation of staff resources by Cambridge
since then.

● Internal Cost Reduction

● Training

 28

Examples: Xensource (pre-2007)

● Xen is a Linux-based virtualisation solution developed at the University of
Cambridge. After receiving VC funding the project sold tested distributions in
combination with hardware vendors and incident-limited bundles of technical
support. In 2007 Xensource was acquired by Citrix for $500m

● Provision of paid support

 29

Conclusion

● 'FOSS' and 'commercial' are not antagonistic concepts - FOSS code is
increasingly accepted as a necessary component of commercial software (IT
consulting firm Gartner predicts FOSS will form some part of 80% of
commercial software offerings by 2012*)

● Thus it is becoming increasingly important for educational software projects
to understand FOSS licensing and exploitation if they are to reach
sustainability

 * http://gartner.com/it/page.jsp?id=593207

 30

Questions?

 31

OSS Watch - http://www.oss-watch.ac.uk/
Free Software Foundation - http://www.fsf.org/
Open Source Initiative - http://www.opensource.org/
Bill Gates' letter to hobbyists - http://en.wikipedia.org/wiki/Open_Letter_to_Hobbyists
The Cathedral and the Bazaar - http://www.catb.org/~esr/writings/cathedral-bazaar/
GNU GPLv3 - http://gplv3.fsf.org/
Wallace v. FSF - http://www.fsf.org/news/wallace-vs-fsf
Jacobsen v. Katzer - http://www.groklaw.net/articlebasic.php?story=20060514233436196
BioImage Suite - http://www.bioimagesuite.org/
YARP - http://eris.liralab.it/yarp/
The Versioning Machine - http://v-machine.org/
Apache Software Foundation - http://www.apache.org/
Software in the Public Interest - http://www.spi-inc.org/
Software Freedom Conservancy - http://conservancy.softwarefreedom.org/
Sakai - http://sakaiproject.org/portal
Kuali - http://kuali.org/
OpenOffice.org - http://www.openoffice.org/
Google Pack - http://pack.google.com/intl/en-gb/pack_installer.html
GNU Affero GPLv3 - http://www.fsf.org/licensing/licenses/agpl-3.0.html
Wordpress - http://wordpress.org/
SCO v. IBM - http://en.wikipedia.org/wiki/SCO_v._IBM
International Characters - http://www.international-characters.com/
Red Hat - http://www.redhat.com/
MySQL - http://www.mysql.com/
Exim - http://www.exim.org/
Xen - http://citrix.com/English/ps2/products/product.asp?contentID=683148

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

